Orthogonal Matching Pursuit from Noisy Measurements: A New Analysis∗
نویسندگان
چکیده
A well-known analysis of Tropp and Gilbert shows that orthogonal matching pursuit (OMP) can recover a k-sparse n-dimensional real vector from m = 4k log(n) noise-free linear measurements obtained through a random Gaussian measurement matrix with a probability that approaches one as n → ∞. This work strengthens this result by showing that a lower number of measurements, m = 2k log(n − k), is in fact sufficient for asymptotic recovery. More generally, when the sparsity level satisfies kmin ≤ k ≤ kmax but is unknown, m = 2kmax log(n − kmin) measurements is sufficient. Furthermore, this number of measurements is also sufficient for detection of the sparsity pattern (support) of the vector with measurement errors provided the signal-to-noise ratio (SNR) scales to infinity. The scaling m = 2k log(n− k) exactly matches the number of measurements required by the more complex lasso method for signal recovery in a similar SNR scaling.
منابع مشابه
A New Look at Generalized Orthogonal Matching Pursuit: Stable Signal Recovery under Measurement Noise
Generalized orthogonal matching pursuit (gOMP) is an extension of orthogonal matching pursuit (OMP) algorithm designed to improve the recovery performance of sparse signals. In this paper, we provide a new analysis for the gOMP algorithm for both noiseless and noisy scenarios. We show that if the measurement matrix Φ ∈ R satisfies the restricted isometry property (RIP) with δ7K+N−1 ≤ 0.0231, th...
متن کاملCorrection to "Generalized Orthogonal Matching Pursuit"
As an extension of orthogonal matching pursuit (OMP) improving the recovery performance of sparse signals, generalized OMP (gOMP) has recently been studied in the literature. In this paper, we present a new analysis of the gOMP algorithm using restricted isometry property (RIP). We show that if the measurement matrix Φ ∈ R satisfies the RIP with δmax{9,S+1}K ≤ 1 8 , then gOMP performs stable re...
متن کاملRecovery of Block-Sparse Representations from Noisy Observations via Orthogonal Matching Pursuit
We study the problem of recovering the sparsity pattern of block-sparse signals from noise-corrupted measurements. A simple, efficient recovery method, namely, a block-version of the orthogonal matching pursuit (OMP) method, is considered in this paper and its behavior for recovering the block-sparsity pattern is analyzed. We provide sufficient conditions under which the block-version of the OM...
متن کاملSparse recovery via Orthogonal Least-Squares under presence of Noise
We consider the Orthogonal Least-Squares (OLS) algorithm for the recovery of a m-dimensional k-sparse signal from a low number of noisy linear measurements. The Exact Recovery Condition (ERC) in bounded noisy scenario is established for OLS under certain condition on nonzero elements of the signal. The new result also improves the existing guarantees for Orthogonal Matching Pursuit (OMP) algori...
متن کاملSimultaneous Orthogonal Matching Pursuit With Noise Stabilization: Theoretical Analysis
This paper studies the joint support recovery of similar sparse vectors on the basis of a limited number of noisy linear measurements, i.e., in a multiple measurement vector (MMV) model. The additive noise signals on each measurement vector are assumed to be Gaussian and to exhibit different variances. The simultaneous orthogonal matching pursuit (SOMP) algorithm is generalized to weight the im...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009